Hi there,
Several years ago I received the book “Como si nunca hubieran sido” as a Christmas present. In this poem, Javier Gallego and Juan Gallego talk about the real drama suffered by immigrants trying to reach Europe through the Mediterranean route. The current pandemic situation has overshadowed many problems that affect millions of people each year. Missing Migrants Project tracks incidents involving migrants, including refugees and asylum-seekers, who have died or gone missing in the process of migration towards an international destination. It shows the situation of many people who are forced to emigrate even during the pandemic time. And it also helps me to contextualize my first world problems.
Here you have a simple analyses about the human migration fatalities during the last years in the Mediterranean corridor using R.
library(dplyr)
library(lubridate)
library(purrr)
library(incidence)
library(ggmap)
library(scales)
# Let's download and read the data from the Missing Migrants Project web site
url <- "https://missingmigrants.iom.int/global-figures/all/csv"
mm <- read.csv("/home/javifl/Descargas/MissingMigrants-Global-2021-06-27T21-15-07.csv")
# Filter the data for Mediterranean region
mm <- mm %>% filter(Region == "Mediterranean") %>% filter(Migration.Route != "")
mm$lon <- as.numeric(unlist(map(strsplit(mm$Location.Coordinates, ", "), 2)))
mm$lat <- as.numeric(unlist(map(strsplit(mm$Location.Coordinates, ", "), 1)))
mm$date <- mdy(mm$Reported.Date)
# plot the incidence of fatalities
mmInc <- incidence(mm$date, interval = 30, groups = mm$Migration.Route)
plot(mmInc, labels_week = F, stack = TRUE, border = "grey") +
scale_x_date(labels = date_format("%B %Y"))
We can plot the monthly incidence of accidents involving migrants using the R package incidence. Here you can see how during the first months of 2020 the migration fatalities decreased, probably due to the pandemic impact. However, human migration incidents increased during the second half of 2020 despite of pandemic restrictions in West and Central Mediterranean routes.
Finally, we can plot monthly incidents using ggmap R package.
months <- seq(ymd("2014-01-1"),ymd(max(mm$date)), by = '1 month')
myLocation<-c(min(mm$lon)-2.5, min(mm$lat)-2, max(mm$lon)+1, max(mm$lat)+1)
myMap<-get_map(location=myLocation, source="stamen", maptype="watercolor", crop=FALSE)
for (i in 1:length(months)-1){
int <- interval(months[i], months[i+1])
newmm <- mm[mm$date %within% int,]
id <- sprintf("%02d", i)
if (nrow(newmm) > 0){
png(paste("mm",id,".png", sep=""), width=900, height=610, units="px",
pointsize=18)
print(ggmap(myMap) +
geom_point(aes(x=lon, y=lat, size = 2), data=newmm, col="orange", alpha=0.5) +
#geom_density2d(aes(x=lon, y=lat), data=newmm, size = 0.3) +
#stat_density2d(data = newmm,
# aes(x = lon, y = lat, fill = ..level.., alpha = ..level..), size = 0.01,
# bins = 16, geom = "polygon") + scale_fill_gradient(low = "green", high = "red") +
scale_alpha(range = c(0, 0.2), guide = FALSE) +
theme(legend.position = "none", plot.title = element_text(size = 25)) +
ggtitle(paste(year(months[i]), month(months[i], label = T, abbr = F), sep=" - ")))
dev.off()
}
print(id)
}
"No soy un número ni parte de una cifra
aunque se paga por igual la misma tarifa..."